Quantum computing is a multidisciplinary field comprising aspects of computer science, physics, and mathematics that utilizes quantum mechanics to solve complex problems faster than on classical computers. The field of quantum computing includes hardware research and application development. Quantum computers are able to solve certain types of problems faster than classical computers by taking advantage of quantum mechanical effects, such as superposition and quantum interference. Some applications where quantum computers can provide such a speed boost include machine learning (ML), optimization, and simulation of physical systems. Eventual use cases could be portfolio optimization in finance or the simulation of chemical systems, solving problems that are currently impossible for even the most powerful supercomputers on the market.

Understanding Quantum Computing
The field of quantum computing emerged in the 1980s. It was discovered that certain computational problems could be tackled more efficiently with quantum algorithms than with their classical counterparts.
Quantum computing has the capability to sift through huge numbers of possibilities and extract potential solutions to complex problems and challenges. Where classical computers store information as bits with either 0s or 1s, quantum computers use qubits. Qubits carry information in a quantum state that engages 0 and 1 in a multidimensional way.1
Such massive computing potential and the projected market size for its use have attracted the attention of some of the most prominent companies.3 These include IBM, Microsoft, Google, D-Waves Systems, Alibaba, Nokia, Intel, Airbus, HP, Toshiba, Mitsubishi, SK Telecom, NEC, Raytheon, Lockheed Martin, Rigetti, Biogen, Volkswagen, and Amgen.
Benefits of Quantum Computing
- Financial institutions may be able to use quantum computing to design more effective and efficient investment portfolios for retail and institutional clients. They could focus on creating better trading simulators and improve fraud detection.
- The healthcare industry could use quantum computing to develop new drugs and genetically-targeted medical care. It could also power more advanced DNA research.
- For stronger online security, quantum computing can help design better data encryption and ways to use light signals to detect intruders in the system.
- Quantum computing can be used to design more efficient, safer aircraft and traffic planning systems.
Features of Quantum Computing
Superposition and entanglement are two features of quantum physics on which quantum computing is based. They empower quantum computers to handle operations at speeds exponentially higher than conventional computers and with much less energy consumption.
Superposition
According to IBM, it's what a qubit can do rather than what it is that's remarkable. A qubit places the quantum information that it contains into a state of superposition. This refers to a combination of all possible configurations of the qubit. "Groups of qubits in superposition can create complex, multidimensional computational spaces. Complex problems can be represented in new ways in these spaces.
Entanglement
Entanglement is integral to quantum computing power. Pairs of qubits can be made to become entangled. This means that the two qubits then exist in a single state. In such a state, changing one qubit directly affects the other in a manner that's predictable.
Quantum algorithms are designed to take advantage of this relationship to solve complex problems. While doubling the number of bits in a classical computer doubles its processing power, adding qubits results in an exponential upswing in computing power and ability.8
Decoherence
Decoherence occurs when the quantum behavior of qubits decays. The quantum state can be disturbed instantly by vibrations or temperature changes. This can cause qubits to fall out of superposition and cause errors to appear in computing. It's important that qubits be protected from such interference by, for instance, supercooled refridgerators, insulation, and vacuum chambers.
Limitations of Quantum Computing
Quantum computing offers enormous potential for developments and problem-solving in many industries. However, currently, it has its limitations.
- Decoherence, or decay, can be caused by the slightest disturbance in the qubit environment. This results in the collapse of computations or errors to them. As noted above, a quantum computer must be protected from all external interference during the computing stage.
- Error correction during the computing stage hasn't been perfected. That makes computations potentially unreliable. Since qubits aren't digital bits of data, they can't benefit from conventional error correction solutions used by classical computers.
- Retrieving computational results can corrupt the data. Developments such as a particular database search algorithm that ensures that the act of measurement will cause the quantum state to decohere into the correct answer hold promise.
- Security and quantum cryptography is not yet fully developed.
- A lack of qubits prevents quantum computers from living up to their potential for impactful use. Researchers have yet to produce more than 128, as of 2019.
No comments:
Post a Comment